Schuartz 7.4 (a)

$$
H_{0}=\frac{1}{2} \phi \square \phi \quad H_{\text {int }}=\frac{1}{2} m^{2} \phi^{2}
$$

$$
O(1): \quad 1-2
$$

$$
O\left(m^{2}\right)=\quad 1-x-2
$$

$$
O\left(m^{4}\right): \quad 1-x_{1}-x_{2}-2
$$

$$
O\left(m^{6}\right)=1-x_{1}-x_{2}-x_{3}-2
$$

Schwartz
$7.4(c)$ this also includes part (b)
4 Ot order: $<0 l \tau\left\{\phi_{2} \&_{2}\right\}|0\rangle$

$$
\begin{gathered}
=D_{12} \\
A_{p p} l_{y} L S z:(-i)^{2} \int d^{4} x_{1} e^{-i p_{1} x_{1}} p_{1}^{2} \int d^{4} x_{2} e^{i p_{2} x_{2}} P_{2}^{2} D_{12}
\end{gathered}
$$

Let the integral be implicit.

$$
\begin{aligned}
&=-e^{-i p_{i} x_{1}} e^{i p_{2} x_{2}} \frac{i}{k^{2} l i \varepsilon} e^{i k\left(x_{1}-y_{2}\right)} p_{1}^{2} p_{2}^{2} \\
&=(-i) \frac{e^{i x_{1}\left(k-p_{1}\right)} e^{i x_{2}\left(p_{2}-k\right)} p_{1}^{2} p_{2}^{2}}{k^{2}+i \varepsilon} \\
&= \frac{(-i) e^{i x_{2}\left(p_{2}-p_{1}\right)} p_{1}^{2} p_{2}^{2}}{p_{1}^{2}+i \varepsilon} \\
&=(-i) p_{2}^{2} \delta\left(p_{2}-p_{1}\right)
\end{aligned}
$$

* Dst order: $\left.\frac{-i m^{2}}{2!}<0\left|\tau\left\{\phi_{2} \phi_{2} \phi_{\alpha}^{2}\right\}\right| 0\right\rangle$

$$
=-i m^{2} \int d^{4} D_{1 \alpha} D_{\alpha_{2}}
$$

Again, let the integral over undetermined position and momenta be implicit,

$$
\begin{aligned}
& =-i m^{2} \frac{i}{k_{1}^{2}+i \varepsilon} e^{i k_{1}\left(x_{1}-\alpha\right)} \frac{i}{k_{2}^{2}+i \varepsilon} e^{i k_{2}\left(\alpha-x_{2}\right)} \\
& =\frac{i m^{2} \frac{e^{i \alpha\left(k_{2}-k_{1}\right)} e^{i k_{1} x_{1}} e^{i k_{2} x_{2}}}{\left(k_{1}^{2}+i \varepsilon x k_{2}^{2}+i \varepsilon\right)}}{=i m^{2} \frac{e^{i k_{1}\left(x_{1}+x_{2}\right)}}{\left(k_{1}^{2}+i \varepsilon\right)\left(k_{1}^{2}+i \varepsilon\right)}}
\end{aligned}
$$

Apply $L S z$, multiply by $\left(-i e^{-i p_{1} x_{1}} p_{1}^{2}\right)\left(-i e^{i p_{2} x_{2}} p_{2}^{2}\right)$ and integrate over $x_{1}, x_{2}$, again, the integration is implicit

$$
\begin{aligned}
& =\frac{i m^{2}(-1) e^{i-k_{1}\left(x_{1}+x_{2}\right)} e^{-i p_{1} x_{1}} e^{i p_{2} x_{2}} p_{1}^{2} p_{2}^{2}}{\left(k_{1}^{2}+i \varepsilon\right)^{2}} \\
& =\frac{\left(-i m^{2}\right) e^{i x_{1}\left(k_{1}-p_{1}\right)} e^{i k_{2}\left(k_{1}-p_{2}\right)}}{\left(k_{1}^{2}+i \varepsilon\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\left(-i m^{2}\right) e^{i x_{2}\left(p_{1}-p_{2}\right)} p_{1}^{2} p_{2}^{2}}{\left(p_{1}^{2}+i \varepsilon\right)^{2}} \\
& =\left(-i m^{2}\right) \frac{p_{2}^{2}}{p_{1}^{2}} f\left(p_{1}-p_{2}\right)
\end{aligned}
$$

* 2nd order: $\frac{1}{2!}\left(\frac{-5 m^{2}}{2!}\right)^{2}=01 T\left\{\phi_{1} \phi_{2} \phi_{\alpha}^{2} \&_{\beta}^{2}\right\} l 0>$

$$
=\left(-\frac{1 m^{2}}{}\right)^{2} \int d^{4} \cdot \alpha \cdot d^{4} \cdot \beta D_{1 \alpha} D_{\alpha \beta} D_{\beta 2}
$$

(I)

$$
\begin{aligned}
& \frac{i}{k_{1}^{2}+i \varepsilon} \frac{i}{k_{2}^{2} t_{i \varepsilon}} \frac{i}{k_{3}^{2}+i \varepsilon} e^{i k_{1}\left(x_{1}-\alpha\right)} e^{i k_{2}(\alpha-\beta)} e^{i k_{3}\left(\beta-x_{2}\right)} \\
& =\frac{-i}{(\cdots)} e^{i \alpha\left(k_{2}-k_{1}\right)} e^{i \beta\left(k_{3}-k_{2}\right)} e^{i k_{1} x_{1}} e^{-i k_{3} x_{2}} \\
& =\frac{-i}{\left(k^{2}+i \varepsilon\right)^{3}} e^{i k\left(y_{1}-y_{2}\right)}
\end{aligned}
$$

Apply LSZ: multiply $\left(-i e^{-i p_{1} x_{1}} p_{1}^{2}\right)\left(-i e^{i k_{2} x_{2}} p_{2}^{2}\right)$

$$
=\frac{(-i)^{3} e^{i x_{1}\left(k-p_{1}\right)} e^{i x_{2}\left(p_{2}-k\right)} p_{1}^{2} p_{2}^{2}}{\left(k^{2}+i \varepsilon\right)^{3}}
$$

$$
\begin{aligned}
& =i \frac{e^{i x_{2}\left(p_{2}-p_{i}\right)}}{\left(p_{1}^{2}+i \varepsilon\right)^{3}} p_{1}^{2} p_{2}^{2} \\
& \quad=i \frac{p_{2}^{2}}{\left(p_{1}^{2}\right)^{2}} \&\left(p_{2}-p_{1}\right)
\end{aligned}
$$

Multiply buck $\left(-i m^{2}\right)^{2}$, we have

$$
\left(i m^{2}\right)^{2} 1 \frac{P_{2}^{2}}{\left(P_{1}^{2}\right)^{2}} \cdot 8\left(P_{2}-P_{1}\right)
$$

* 3 rd order: $\left.\frac{1}{3!}\left(\frac{-i m^{2}}{2!}\right)^{3}<01 \tau\left\{\phi_{1} \phi_{2} \phi_{\alpha}^{2} \phi_{\beta}^{2} \phi_{\gamma}^{2}\right\} 10\right\rangle$ Nultolizity 3 $6 \times 4 \times 2=48$, cancels nixon $\frac{1}{3!}\left(\frac{1}{2!}\right)^{3}$.

$$
\begin{aligned}
& =\left(-i m^{2}\right)^{3} \int d^{4} \alpha d^{4} \beta d^{4} \gamma D_{1 \alpha} D_{\alpha \beta} D_{\beta \gamma} D_{\gamma 2} \\
& =\frac{i}{k_{1}^{2}+i \varepsilon} \frac{i}{k_{2}^{2}+i \varepsilon} \frac{i}{k_{3}^{2}+i \varepsilon} \frac{i}{k_{4}^{2}+i \varepsilon} e^{i k_{1}\left(x_{1}-\alpha\right)} e^{i k_{2}(\phi-\beta)} e^{i k_{3}(\beta-\gamma)} e^{i k_{4}\left(1-k_{2}\right.} \\
& =(\cdots) e^{i \alpha\left(k_{2}-k_{1}\right)} e^{i \beta\left(k_{3}-k_{2}\right\rangle} e^{i \gamma\left(k_{4}-k_{3}\right)} e^{i k_{i} x_{1}} e^{-i k_{4} x_{2}} \\
& =\frac{1}{\left(k^{2}+i \varepsilon\right)^{4}} e^{i k\left(x_{1}-x_{2}\right)}
\end{aligned}
$$

Apply $L S Z:$ multiply by $\left(-i e^{-i p_{1} x_{1}} p_{1}^{2}\right)\left(-i e^{i p_{2} x_{2}} p_{2}^{2}\right)$

$$
\begin{aligned}
& =\frac{(-1)}{\left(k^{2}+i \varepsilon\right)^{4}} e^{i x_{1}\left(k-p_{1}\right)} e^{i \psi_{2}\left(p_{2}-k\right)}{p_{1}^{2} p_{2}^{2}}^{=\frac{-1}{\left(P_{1}^{2}+i \varepsilon\right)^{4}} e^{i k_{2}\left(p_{2}-p_{1}\right)} P_{1}^{2} p_{2}^{2}} \\
& =\frac{-P_{2}^{2}}{\left(P_{1}^{2}\right)^{3}} \&\left(p_{2}-p_{1}\right)
\end{aligned}
$$

putting buck $\left(-テ m^{2}\right)^{3}$, we have

$$
=\left(-i m^{2}\right)^{3} \frac{p_{2}^{2}}{\left(p_{1}^{2}\right)^{3}}+\left(p_{2}-p_{1}\right)
$$

$$
\begin{aligned}
& O(1):(-i) p_{2}^{2} \delta\left(p_{2}-p_{1}\right) \\
& O\left(m^{2}\right):\left(-i m^{2}\right) \frac{p_{2}^{2}}{p_{1}^{2}} \&\left(p_{2}-p_{1}\right) \\
& O\left(m^{4}\right):\left(-i m^{2}\right)^{2} i \frac{p_{2}^{2}}{\left(p_{1}^{2}\right)^{2}} \&\left(p_{2}-p_{1}\right) \\
& O\left(m^{6}\right):-\left(-i m^{2}\right)^{3} \frac{p_{2}^{2}}{\left(p_{1}^{2}\right)^{3}} \&\left(p_{2}-p_{1}\right)
\end{aligned}
$$

Adding:

$$
\begin{aligned}
& \mu \propto p_{2}^{2} \delta\left(p_{2}-p_{1}\right)\left[-i+\frac{-i m^{2}}{p_{1}^{2}}+\frac{i\left(-i m^{2}\right)^{2}}{\left(p_{1}^{2}\right)^{2}}+\frac{-\left(-i m^{2}\right)^{3}}{\left(p_{1}^{2}\right)^{3}}+\cdots\right] \\
&=f\left(p_{2}-p_{1}\right)\left(-i p_{2}^{2}\right)\left[1+\frac{m^{2}}{p_{1}^{2}}+\frac{m^{4}}{p_{1}^{4}}+\frac{m^{6}}{p_{1}^{6}}\right] \\
&=f\left(p_{2}-p_{1}\right)\left(-i p_{2}^{2}\right)\left[\frac{p_{1}^{2}}{p_{1}^{2}-m^{2}}\right] \\
&=\int d^{4} \times \frac{e^{i x\left(p_{2}-p_{1}\right)}(-i) p_{1}^{2} p_{2}^{2}}{p_{1}^{2}-m^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\int d^{q} x_{1} d^{4} x_{2} \frac{e^{i x_{1} c k-p_{1}} e^{i x_{2}\left(p_{2}-k\right)}(-i) p_{1}^{2} p_{2}^{2}}{k^{2}-m^{2}} \\
& =(-i) \int d^{4} x_{1} \int d x_{2} e^{-i x_{1} p_{1}} p_{1}^{2} e^{i x_{2} p_{2}} p_{2}^{2} \frac{i}{k^{2}-m^{2}} e^{i k^{2}\left(x_{1}-x_{2}\right)} \\
& =\left[-i \int d^{4} x_{1} e^{-i x_{1} p_{1}} p_{1}^{2}\right]\left[-i \int d^{4} x_{2} e^{i x_{2} p_{2}} p_{2}^{2}\right] \frac{i}{k^{2}-m^{2}} e^{i k\left(x_{1}-y_{2}\right]}
\end{aligned}
$$

One can clearly see the Mrersion of the LSZ reduction formula applied on $D_{F}\left(x_{1}, x_{2}\right)$.

$$
3.15 .2024
$$

show fy
7.4 (d)

$$
\begin{aligned}
& \mathcal{L}=-\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial_{\mu} \phi\right) \\
& \Rightarrow \text { rr } \varphi \mu_{2} \quad D \phi=0 .
\end{aligned}
$$

Solve it with a cunt I $J$, which can be anything, such as delta function,

$$
B q=J, \quad \phi=\frac{1}{\square} J .
$$

Rerturb it: $\quad \mathcal{L}_{\text {mit }}=-\frac{1}{2} m^{2} \phi^{2}$, then

$$
\begin{aligned}
& \mathcal{L}_{0}+\mathcal{L}_{\operatorname{in} t}=-\frac{1}{2}\left(d_{\mu} \phi\right)\left(d_{\mu} \phi\right)-\frac{1}{2} m^{2} \phi^{2} \\
& T_{2} Q_{\mu}=\left(\square+m^{2}\right) \phi=\theta, \Rightarrow\left(B+m^{2}\right) \phi=J .
\end{aligned}
$$

Assuming $\varphi=\phi_{0}+\phi_{1}$, where $\phi_{0}=\frac{1}{\square} J$, we now wish to solve for $\phi_{1}$ in $O\left(\mathrm{ni}^{2}\right)$

$$
\begin{aligned}
&\left(\square+m^{2}\right) \phi=J, \quad\left(\square+m^{2}\right)\left(\phi_{0}+\phi_{1}\right)=J, \\
& m^{2} \phi_{0}+\square \phi_{0}+m^{2} \phi_{0}+\square \phi_{1}+m^{2} \phi_{1}=J\left(m^{4}\right)=0, \\
& \Rightarrow \quad \phi_{1}=-\frac{m^{2}}{\square} \phi_{0}, \\
& \Rightarrow=\frac{1}{\square} J-\frac{m^{2}}{\square^{2}} J+O\left(m^{4}\right)
\end{aligned}
$$

To next order, Assume $\varphi_{0}=\frac{1}{\pi} J-\frac{m^{2}}{1 J^{2}} J$, We nuns to solve for $\phi^{\prime}$ in $\phi=\phi_{0}+\phi^{\prime}$ to $O\left(m^{4}\right)$

$$
\begin{gathered}
\left(\square+m^{2}\right) \phi=\left(\square+m^{2}\right)\left(\frac{1}{\square} J-\frac{m^{2}}{J^{2}} J+\phi^{\prime}\right)=J \\
J-\frac{m^{2}}{\square} J+\square \phi^{\prime}+\frac{m^{2}}{\square} J-\frac{m^{4}}{\square^{2}} J+m^{2} \phi^{\prime}=J \\
\square \phi^{\prime}-\frac{m^{4}}{\square^{2}} J+O\left(m^{6}\right)=0, \\
\phi^{\prime}=\frac{m^{4}}{\square^{3}} J .
\end{gathered}
$$

We have, to $O\left(m^{4} t\right)$ :

$$
\begin{aligned}
d & =\frac{1}{B} J-\frac{m^{2}}{\square J^{2}} J+\frac{m^{4}}{J^{3}} J \cdot t \cdots \\
& =\frac{1}{\square}\left(1-\frac{m^{2}}{\square}+\left(\frac{m^{2}}{\square}\right)^{2}+\cdots\right) J \\
& =\frac{1}{\square}\left(\frac{1}{1-\frac{-m^{2}}{\square}}\right) J \\
& =\frac{1}{\square}\left(\frac{1 J}{\square+m^{2}}\right) J \\
& =\frac{1}{\square+m^{2}} J
\end{aligned}
$$

Replacing i] with $-k^{2}$, he optam

$$
\phi=\frac{1}{-k^{2}+m^{2}} J=\frac{-1}{k^{2}-m^{2}} J
$$

This solves $\left(1 . \square m^{2}\right) \phi=J$, the full interaction $\bar{E} 4 \mu$.

$$
3.15 .2024
$$

